

Self-cleaning sensors for automated continuous slurry viscosity and weight monitoring in-tank

Joe Goodbread, Sunil Kumar, Daniel Brunner, Daniel R.H. Lima, Caroline E. Giacomin

Rheonics

Winterthur, Switzerland

- 2. Motivation
- 3. Design Principle
- 4. Proof of Concept
- 5. Field Trial
- 6. Outlook

Agenda

Slurry consistency measurements

Current slurry monitoring options

2

Problems with existing systems: manual

- Intermittent
- Operator variability
- Time consuming
- Frequent device cleaning
- Samples tested outside of process conditions
- Time delay

Problems with existing systems: in-tank

- Many slurries give continuous readings without issue.
- Slurries, by design, adhere to surfaces.
- Deposits formation can distort readings.
- Cleaning schedules/checks for sensor can be required.

Problems with existing systems: in-tank

- Cleaning requirements differ by foundry and slurry.
- Observing readings over time is required to find necessary cleaning frequency
- Hurdle towards measurement use in process control

Method for preventing deposition is desired.

2. Motivation

Desired outcomes

- Uninterrupted reading
- Built-in cleaning mechanism:
 - Prevent deposit formation
 - Remove deposits after formation
- Reduce maintenance
- Increase shell room operator trust

Is this even possible?

2. Motivation

Requirements

Design Principle

3. Design Principle

Inspiration

- Kitchen mixer with rotating bowl and plow blade
- Ransom & Randolph SuspendaSlurry
- Rheonics SRD for viscosity and density measurements
- Pneumatically-actuated vibrator

Experimental procedure

- Drum was rotated at a constant speed
- Viscosity and density recorded as a function of time
- Cleaning vibration alternated:
 - 25 minutes off
 - 25 minutes on

Results

Manual density check

 Agrees well with conventional density measurement

5. Field Trial

Validation in industrial shell room

- Prime slurry
- Slurry previously known to form deposits on sensor in-tank
- Plant operation continues normally
- Data acquired in parallel from:
 - Efflux cup
 - Rheonics SRD with vibration
- Continuous operation
 - 5 months so far !

5. Field Trial

neonics

Results from SRD with vibration

- No cleaning or inspection for period shown
- 1 month of operation
- Vibration run continuously
- Density remains constant

© Rheonics

5. Field Trial

6. Outlook

Requirements fulfilled

6. Outlook

Shell room automation

- Extends application of SRD viscosity and density measurements to deposit prone slurries
- Reduces reliance on **manual measurements**
- Saves cleaning time
- Increases trust of in-tank measurements
- Reduces measurement reliability concerns
- Step towards Industry 4.0

Questions?

Rheonics GmbH

Winterthur, Switzerland 🕂

Tel: +41 52 511 32 00

Rheonics, Inc. Texas, U.S.A. Tel: +1 713 364 5427

Web: https://rheonics.com

Email: Sales: <u>info@rheonics.com</u> Support: <u>support@rheonics.com</u>

