

inline process density and viscosity monitoring

MODBUS TCP Field Device Specification: Rheonics, SME

Covers sensor Types: SR, SRV, SRD, DVP, DVM

GLOBAL SUPPORT

For Support, visit: https://support.rheonics.com

EUROPE HEADQUARTERS

Rheonics GmbH Klosterstrasse. 19 8406 Winterthur Switzerland Tel: +41 52 511 32 00

US HEADQUARTERS

Rheonics, Inc. 3 Sugar Creek Center Blvd, Ste 100 Sugar Land, TX 77478 United States of America Tel: +1 713 364 5427

Website: <u>https://rheonics.com</u> Support Portal: <u>https://support.rheonics.com</u> Sales E-Mail: <u>info@rheonics.com</u> Support E-Mail: <u>support@rheonics.com</u>

© COPYRIGHT RHEONICS 2022

No part of this publication may be copied or distributed, transmitted, transcribed, stored in a retrieval system, or translated into any human or computer language, in any form or by any means, electronic, mechanical, manual, or otherwise, or disclosed to third parties without the express written permission of Rheonics. The information contained in this manual is subject to change without notice.

TRADEMARKS

Rheonics is a trademark of Rheonics, Inc. Other product and company names listed in this manual are trademarks or trade names of their respective manufacturers.

Contents

1	Before you begin	4
2	Product overview	5
3	Modbus TCP Installation	6
4	Getting started	7
5	Modbus Protocol	10
6	Linking tags with Modbus Poll	16
7	Modbus TCP Command and Response examples	25
8	Sensor status and parameter status	27
9	Units table	30
10	Troubleshooting	31
11	Notes/Errata	34

1 Before you begin

1.1 About the manual

This manual provides information on Modbus TCP support on Rheonics devices. This document specifies all the device-specific features and Modbus TCP Protocol implementation details. **Important Instructions**

This manual assumes that the following conditions apply:

- The sensor has been installed correctly and completely according to the installation.
- The installation complies with all applicable safety requirements.
- The user is trained in relevant safety standards.

1.2 Purpose

This specification is designed to complement the SME Installation Manual by providing a complete, clear description of this Field Device from a Modbus TCP Communication perspective.

1.3 Who should use this document?

The specification is designed to be a technical reference for Modbus TCP End Users. This document assumes the reader is familiar with Modbus Protocol requirements and terminology.

1.4 Warning

Before connecting the Modbus Communicator in an explosive atmosphere, make sure instruments are ordered and installed in accordance with intrinsically safe or EX classification-specific field wiring practices. Explosions can cause serious injury or death. Review Rheonics Ex Manual at https://rheonics.com/resources/manuals/.

1.5 Nomenclature

Abbreviation (short form)	Full-term	Meaning
SRV	Symmetric Resonator Viscometer	Viscosity sensor
SRD	Symmetric Resonator Densitometer	Density and Viscosity sensor
DVP	Density Viscosity Probe	HPHT inline probe
DVM	Density Viscosity Module	HPHT inline module
RCP	Rheonics Control Panel	Software for data acquisition and configuration
SME	Smart Module Electronics	Sensor electronics

Table 1. Defined Acronyms

1.6 Related Documentation

You can find all product documentation on the USB stick shipped with the SME and on our website at <u>https://rheonics.com/resources</u>

2 Product overview

The Rheonics SME provides clients Modbus TCP interface to get digital data on all devices ordered. This document provides guidance for field connection by an end user.

Figure 1. SME sensor electronics unit.

2.1 Process Interface

The SME is compatible with various Rheonics instruments. This includes Type: SR (SRV & SRD), Type: DV (DVP, DVM) and other instruments using the SME electronics from Rheonics.

Figure 2: Rheonics Sensor for Viscosity and density measurements.

2.2 Reference to other instruments.

Manuals and guides for digital instruments are modular. General instructions give information about the functioning and installation of instruments. Operational instructions explain the use of the digital instrument features and parameters. Fieldbus specific information explains the installation and use of the instrument on that Fieldbus network. Related manuals are listed next and can be found in <u>https://rheonics.com/resources</u>:

- SRV USER MANUAL
- SRD USER MANUAL
- DVP USER MANUAL
- DVM USER MANUAL
- SENSOR INSTALLATION MANUAL
- RHEONICS CONTROL PANEL USER MANUAL

3 Modbus TCP Installation

3.1 Instrument overview:

3.2 Ethernet PIN assignment Modbus TCP

RJ45 Connector	Receptacle	Pin Number	Wire Color	Description
	1 8	1	Yellow	Transmit+
I am I		2	Orange	Transmit-
		3	White	Receive+
- Canada		4		Not Used
		5		Not Used
Contraction of		6	Blue	Receive-
		7		Not Used
		8		Not Used

Table 2: RJ45 Connector Pinout.

4 Getting started

4.1 Components Used

- Rheonics SRV, SRD, DVP or DVM w/ Firmware V03.30/0 or higher
- Modbus Communication software (e.g. Modbus Poll)
- Software sensor: Rheonics Control Panel (RCP)
- Windows 10 64 bit

4.2 System Connections

Connect the sensor to a PC (with RCP and Modbus communication software installed) with an Ethernet Cable connected in the sensor electronics RJ-45 port. This can be done through an Ethernet switch or hub, or a direct connection.

Figure 4. Communication diagram for Rheonics sensor-PLC and PC.

MODBUS Client TCP/IP

4.3 Configure Rheonics SME

In this section, the SME ethernet configuration is set. We will use the RCP software on the PC, connect to the SME using USB and configure the SME to disable DHCP. Make sure it has a valid IP address. Figure 7 shows a standard configuration that can be used for the correct performance of the system. See the next steps as guidance.

Open the RCP software. On Settings Communication Tab, select USB, identify the COM Port of the desired SME to connect and click Apply. Wait for the Status Led to go green.

asurement Events	Settings Set	vice Diagnosti	us	Comm	unicatio	n Tem	p. Control	Logger	H	rip	
Operator	0	Communication									
Name / ID	Rheanics	@ US8	Port	COM	25		Autodetect		٦r	Device	tatus
Client	Rheonics GrabH	O enternet	IP			Po	t 10001	A Noply		Manager	0
Sensor Configurati	on	Units								Resolutio	an (
Sensor Type	SRV	Viscosity	() (c)	my C	Ó IFI	0.0				0.000	v.
Import	Export	Density	0		Daym	1 0 00				0.0000	
b	pert Mode	Temperature	۲	c	D 11	01				0.00	2
		Pressure	(•) > 1		3πeC	OW	0.00	Om C	(inn	0.00	<u>v</u>
Pressure Gauge		Graph Settings									
Communication		Wecesity	v	 au 	to O	tiz	Min	1 mPa.s	Max	40 mPa s	
Device ID	Ne Sensor	Calc. Density	Ψ.	 au 	to O	tte	Min	0 kg/m3	Мах	1.5 kg/m3	
Las Cattlens		Temperature Scale		() AU	to 💿	fie	Min	10 °C	Max	40 °C	
Logging Interval	10 tet v	Pressure Scale		۰ ه	do ()	fix	Min	1 bar	Max	10 bar	
Measurement Frequen	ay (Every) 10 sec	Time Scale		🖲 tu	• 0	fix	Range	5 min ~			
-		1020000000000		14900	20210						

Figure 6: USB connection with SME.

For Static IP address, in the Ethernet section click the dropdown menu in DHCP and select false (this will disable the DHCP function) – input the static IP address, subnet and gateway to be used (Figure 7 is an example). Check the RCP manual for detailed instructions.

leasurement	Events	Settings	Service		Diagno	stics C	Communication	Temp. Contro	Logger	1	lelp	
Modbus RTU (RS-485)			5	LCD DE	splay (SME	TRD Only)		0	Write	and Updat	te
Modbus Addres	5	1			Line 1	Paramet Viscosity	er V	Resolut 0.00	an v	Ť.	Write Cor	nfig
Baud Rate		38400	×		Line 2	Density	×.	0.000	×			
Parity		000	~		Line 3	Temperati	ute 🗸	0.00	v	L	Load Con	fig
Ethernet	-		- (8	Locatio	in ID	_	_	_	_	_	
Ethernet MAC		70:83:05:02:00:98			Locatio	in ID			Latit	ude	0.000000	
DHCP		Palse	[¥]		Locati	on Name			Long	gtude	0.000000	
IP		192.168.8.30							Altik	ude	0	
Submet		255.255.255.0										
Gateway @		192.165.6.1			Operati	ion History		-	-	-	-	
DNS		0.0.0.0			RTC TH	WZ	12/08/22 00:04	:47	Su	pply Voltage	23.39	10
Terminal Port		10001			Last po	wer Reset	19/07/22 18:19	22	Sh	NE Temp.	48.60	
Bluetooth LT	E 4.0								lax. Sensor Ten	ip. Exposure	32.58	1
144.0		00.00.00.00.00.00							lax. SME Temp.	Exposure	54.51	

Figure 7: Configuration in RCP to use Ethernet with DHCP.

Click "Write Config" to upload the configuration to the SME. Wait until the button turns green.

asurement Events	Settings	Service	Diagnostics	Communication Ter	mp. Control Logger	Help
Modbus RTU (RS-485)		0	LCD Display (SM	E-TRD Only)	2 Write	and Update
Modbus Address	1		Parame Line 1 Viscosity	eter 🗸	Resolution 0.00 v	Undating
Baud Rate	38400	~	Line 2 Density	~	0.000	opunnig.
Parity	ODD	×	Line 3 Tempera	ture 🗸	0.00	Load Config
thernet	_	0	Location ID	_	_	_
Ethernet MAC	70:83:D5:D2:00:00		Location ID		Latitude	0.000000
DHCP	False	~	Location Name		Longitude	0.000000
IP	192.168.8.30				Altitude	0
Subnet	255.255.255.0					
Gateway IP	192.168.8.1		Operation Histor	у		
DNS	0.0.0.0		RTC Time	12/08/22 00:04:47	Supply Voltage	e 23.39 V
Terminal Port	10001		Last power Reset	19/07/22 18:19:22	SME Temp.	48.60 °C
Bluetooth LTE 4.0	_				Max. Sensor Temp. Exposure	e 32.58 *C
					Max. SME Temp. Exposure	54.51 °C

Figure 8. Upload configuration to the SME.

5 Modbus Protocol

The structure of the request and response body in Modbus TCP connections, from the function code to the end of the data portion, has the same layout and meaning as in the other MODBUS variants, such as Modbus RTU or Modbus ASCII. The only differences in these other cases are the form of any 'framing' sequence, error check pattern, and address interpretation. The request and response are prefixed by eight bytes as follows:

byte 0:	transaction identifier – copied by server – usually 0				
byte 1: transaction identifier – copied by server – usually 0					
byte 2:	protocol identifier = 0				
byte 3:	protocol identifier = 0				
byte 4:	length field (upper byte)				
byte 5: length field (lower byte)					
byte 6: unit identifier					
byte 7:	MODBUS function code				
byte 8:	Address 1 st Register (High Byte)				
byte 9:	Address 1 st Register (Low Byte)				
byte 10:	Number of Registers (High Byte)				
byte 11:	Number of Registers (Low Byte)				
	Table 2: Madbus TCB framing				

Table 3: Modbus TCP framing.

Unit Identifier (byte 6) for Rheonics SME is 255 (0xFF) and must be configured as such. For byte 7, the SME uses the Modbus function code x04, which allows to read the input registers of the device where all the parameters are mapped. All other function codes of the Modbus TCP protocol are unused and will not be mentioned in this document. Byte 8 onwards defines the Data with its first Register address and the number of registers to be read.

5.1 Measured Parameters List

The measured parameters are mapped into the Modbus input registers. There is a total of 23 Parameters available from the SME, as shown in Table 4. Their associated variable, the Sensor and Error status are also listed.

Parameter	Measurement	Description
Parameter 0	Viscosity median	Takes the median of the last
Parameter 1	Density median	5 sensor measurements
Parameter 2	Temperature median	points
Parameter 3	Kinematic Viscosity	Measured value divided by density squared
Parameter 4	Density average	Calculates the average of the last 5 measurement points
Parameter 5	Viscosity raw 'process measurement'	Reads the direct
Parameter 6	Density raw	measurement taken by the
Parameter 7	Temperature raw	sensor.
Parameter 8	Resonant Frequency	Moscurad in Hortz
Parameter 9	Compensated Resonant Frequency	ivieasured III Hertz
Parameter 10	Damping	Damping from Measurement

Parameter 12Viscosity Last GoodKeeps the last-good median measurement in memory when there is a measurement errorParameter 13Density Last Goodmeasurement in memory when there is a measurement errorParameter 14Displays of mapped value from Modbus register 512measurement errorParameter 15Displays of mapped value from Modbus register 514	Parameter 11	Coil Temperature	
Parameter 13Density Last Goodwhen there is a measurement errorParameter 14Displays of mapped value from Modbus register 512	Parameter 12	Viscosity Last Good	Keeps the last-good median measurement in memory
Parameter 14Displays of mapped value from Modbus register 512Parameter 15Displays of mapped value from Modbus register 514Parameter 16Displays of mapped value from Modbus register 516Parameter 17Estimated TemperatureParameter 18Temperature from PT1000 sensorParameter 19Calculated parameter from viscosity 	Parameter 13	Density Last Good	when there is a measurement error
Parameter 15Displays of mapped value from Modbus register 514Parameter 16Displays of mapped value from Modbus register 516Parameter 17Estimated TemperatureParameter 18Temperature from PT1000 sensorParameter 19Calculated parameter from viscosity modelParameter 20Calculated parameter from density modelParameter 21Calculated parameter from concentration modelParameter 22Sensor Cleanliness RatioUsed for estimating sensor cleanlinessParameter 22Sensor Error StatusStatus of the sensor	Parameter 14	Displays of mapped value from Modbus register 512	
Parameter 16Displays of mapped value from Modbus register 516Calculated from internal temperature AlgorithmParameter 17Estimated TemperatureCalculated from internal temperature AlgorithmParameter 18Temperature from PT1000 sensorRead from internal sensorParameter 19Calculated parameter from viscosity 	Parameter 15	Displays of mapped value from Modbus register 514	
Parameter 17Estimated TemperatureCalculated from internal temperature AlgorithmParameter 18Temperature from PT1000 sensorRead from internal sensorParameter 19Calculated parameter from viscosity modelSet from Advanced Calculated parameter from density modelParameter 20Calculated parameter from concentration 	Parameter 16	Displays of mapped value from Modbus register 516	
Parameter 18Temperature from PT1000 sensorRead from internal sensorParameter 19Calculated parameter from viscosity modelSet from Advanced Calculated parameter from concentration modelParameter 21Calculated parameter from concentration 	Parameter 17	Estimated Temperature	Calculated from internal temperature Algorithm
Parameter 19Calculated parameter from viscosity modelSet from Advanced Calculated parameter from density modelParameter 20Calculated parameter from concentration modelSet from Advanced CalculationsParameter 21Calculated parameter from concentration modelUsed for estimating sensor cleanlinessParameter 22Sensor Cleanliness RatioUsed for estimating sensor cleanlinessSensor StatusSensor Error StatusStatus of the sensorErrorError StateError state of the sensor	Parameter 18	Temperature from PT1000 sensor	Read from internal sensor
Parameter 20Calculated parameter from density model Calculated parameter from concentration modelSet from Advanced CalculationsParameter 21Calculated parameter from concentration modelUsed for estimating sensor cleanlinessParameter 22Sensor Cleanliness RatioUsed for estimating sensor cleanlinessSensor StatusSensor Error StatusStatus of the sensorErrorError StateError state of the sensor	Parameter 19	Calculated parameter from viscosity model	Sat from Advanced
Parameter 21Calculated parameter from concentration modelCalculationsParameter 22Sensor Cleanliness RatioUsed for estimating sensor cleanlinessSensor StatusSensor Error StatusStatus of the sensorErrorError StateError state of the sensor	Parameter 20	Calculated parameter from density model	Set from Advanced
Parameter 22Sensor Cleanliness RatioUsed for estimating sensor cleanlinessSensor StatusSensor Error StatusStatus of the sensorErrorError StateError state of the sensor	Parameter 21	Calculated parameter from concentration model	Calculations
Sensor StatusSensor Error StatusStatus of the sensorErrorError StateError state of the sensor	Parameter 22	Sensor Cleanliness Ratio	Used for estimating sensor cleanliness
Error State Error state of the sensor	Sensor Status	Sensor Error Status	Status of the sensor
	Error	Error State	Error state of the sensor

Table 4: Measured Parameters List.

5.2 Input Registers

For each parameter there are seven registers associated; the first two contain the value of the parameter in float data type, the third is the value scaled by 100 in Int16 format, fourth is the status of the parameter in UInt16. The fifth and sixth contain the uncalibrated value and the last one indicates the measurement units.

It's important to notice that Table 5 uses PDU addressing; addresses start at zero. Depending on the PLC used it might be required to add 1 to the addresses, to get the correct registers.

Address (Dec)	Register (Dec)	Length (Reg.)	Туре	Description
Parameter 0	Viscosity median			
40	300041	2	Float32	Parameter 0 value as float
42	300043	1	SInt16	Parameter 0 value scaled by 100
43	300044	1	Uint16	Parameter 0 status (See <u>section</u> 8.2)
44	300045	2	Float32	Parameter 0 Uncalibrated value
46	300047	1	UInt16	Parameter 0 Unit (See section 9)
Parameter 1	Density median			
48	300049	2	Float32	Parameter 1 value as float
50	300051	1	SInt16	Parameter 1 value scaled by 100
51	300052	1	Uint16	Parameter 1 status

Parameter 2

Parameter 3

			[
300053	2	Float32	Parameter 1 Uncalibrated value						
300055	1	UInt16	Parameter 1 Unit						
Temperature median									
300057	2	Float32	Parameter 2 value as float						
300059	1	SInt16	Parameter 2 value scaled by 100						
300060	1	Uint16	Parameter 2 status						
300061	2	Float32	Parameter 2 Uncalibrated value						
300063	1	UInt16	Parameter 2 Unit						
Kinematic Viscosit	ty								
300065	2	Float32	Parameter 3 value as float						
300067	1	SInt16	Parameter 3 value scaled by 100						
300068	1	Uint16	Parameter 3 status						
300069	2	Float32	Parameter 3 Uncalibrated value						
300071	1	UInt16	Parameter 3 Unit						
Density Average									
300073	2	Float32	Parameter 4 value as float						
300075	1	SInt16	Parameter 4 value scaled by 100						
300076	1	Uint16	Parameter 4 status						
300077	2	Float32	Parameter 4 Uncalibrated value						

70	300071	1	UInt16	Parameter 3 Unit
Parameter 4	Density Average			
72	300073	2	Float32	Parameter 4 value as float
74	300075	1	SInt16	Parameter 4 value scaled by 100
75	300076	1	Uint16	Parameter 4 status
76	300077	2	Float32	Parameter 4 Uncalibrated value
78	300079	1	UInt16	Parameter 4 Unit
Parameter 5	Viscosity raw 'pro	cess measu	irement'	
80	300081	2	Float32	Parameter 5 value as float
82	300083	1	SInt16	Parameter 5 value scaled by 100
83	300084	1	Uint16	Parameter 5 status
84	300085	2	Float32	Parameter 5 Uncalibrated value
86	300087	1	UInt16	Parameter 5 Unit
Parameter 6	Density raw			
88	300089	2	Float32	Parameter 6 value as float
90	300091	1	SInt16	Parameter 6 value scaled by 100
91	300092	1	Uint16	Parameter 6 status
92	300093	2	Float32	Parameter 6 Uncalibrated value
94	300095	1	UInt16	Parameter 6 Unit
Parameter 7	Temperature raw			
96	300097	2	Float32	Parameter 7 value as float
98	300099	1	SInt16	Parameter 7 value scaled by 100
99	300100	1	Uint16	Parameter 7 status
100	300101	2	Float32	Parameter 7 Uncalibrated value
102	300103	1	UInt16	Parameter 7 Unit
Parameter 8	Resonant Frequen	су		
104	300105	2	Float32	Parameter 8 value as float
106	300107	1	SInt16	Parameter 8 value scaled by 100
107	300108	1	Uint16	Parameter 8 status
108	300109	2	Float32	Parameter 8 Uncalibrated value
110	300111	1	UInt16	Parameter 8 Unit

Parameter 9	Compensated Resonant Frequency					
112	300113	2	Float32	Parameter 9 value as float		
114	300115	1	SInt16	Parameter 9 value scaled by 100		
115	300116	1	Uint16	Parameter 9 status		
116	300117	2	Float32	Parameter 9 Uncalibrated value		
118	300119	1	UInt16	Parameter 9 Unit		
Parameter 10	Damping Frequen	су				
120	300121	2	Float32	Parameter 10 value as float		
122	300123	1	SInt16	Parameter 10 value scaled by 100		
123	300124	1	Uint16	Parameter 10 status		
124	300125	2	Float32	Parameter 10 Uncalibrated value		
126	300127	1	UInt16	Parameter 10 Unit		
Parameter 11	Coil Temperature					
128	300129	2	Float32	Parameter 11 value as float		
130	300131	1	SInt16	Parameter 11 value scaled by 100		
131	300132	1	Uint16	Parameter 11 status		
132	300133	2	Float32	Parameter 11 Uncalibrated value		
134	300135	1	UInt16	Parameter 11 Unit		
Parameter 12	Viscosity Last Goo	d				
136	300137	2	Float32	Parameter 12 value as float		
138	300139	1	SInt16	Parameter 12 value scaled by 100		
139	300140	1	Uint16	Parameter 12 status		
140	300041	2	Float32	Parameter 12 Uncalibrated value		
142	300043	1	SInt16	Parameter 12 Unit		
Parameter 13	Density Last Good	l				
144	300145	2	Float32	Parameter 13 value as float		
146	300147	1	SInt16	Parameter 13 value scaled by 100		
147	300148	1	Uint16	Parameter 13 status		
148	300149	2	Float32	Parameter 13 Uncalibrated value		
150	300151	1	SInt16	Parameter 13 Unit		
Parameter 14	Displays of mappe	ed value fro	m Modbus	register 512		
152	300153	2	Float32	Parameter 14 value as float		
154	300155	1	SInt16	Parameter 14 value scaled by 100		
155	300156	1	Uint16	Parameter 14 status		
156	300157	2	Float32	Parameter 14 Uncalibrated value		
158	300159	1	SInt16	Parameter 14 Unit		
Parameter 15	Displays of mappe	ed value fro	m Modbus	register 514		
160	300161	2	Float32	Parameter 15 value as float		
162	300163	1	SInt16	Parameter 15 value scaled by 100		
163	300164	1	UInt16	Parameter 15 status		
164	300165	2	Float32	Parameter 15 Uncalibrated value		
166	300167	1	SInt16	Parameter 15 Unit		
Parameter 16	Displays of mappe	ed value fro	m Modbus	register 516		
168	300169	2	Float32	Parameter 16 value as float		

470	200474	4	61.14.6	
170	300171	1	Sint16	Parameter 16 value scaled by 100
1/1	300172	1	UINT16	Parameter 16 status
172	300173	2	Float32	Parameter 16 Uncalibrated value
174	3001/5	1	Sint16	Parameter 16 Unit
Parameter 17	Estimated Temper	rature		
176	300177	2	Float32	Parameter 17 value as float
178	300179	1	SInt16	Parameter 17 value scaled by 100
179	300180	1	UInt16	Parameter 17 status
180	300181	2	Float32	Parameter 17 Uncalibrated value
182	300183	1	SInt16	Parameter 17 Unit
Parameter 18	Temperature from	n PT1000 se	ensor	
184	300185	2	Float32	Parameter 18 value as float
186	300187	1	SInt16	Parameter 18 value scaled by 100
187	300188	1	UInt16	Parameter 18 status
188	300189	2	Float32	Parameter 18 Uncalibrated value
190	300191	1	SInt16	Parameter 18 Unit
Parameter 19	Calculated parame	eter from v	iscosity mo	dels
192	300193	2	Float32	Parameter 19 value as float
194	300195	1	SInt16	Parameter 19 value scaled by 100
195	300196	1	UInt16	Parameter 19 status
196	300197	2	Float32	Parameter 19 Uncalibrated value
198	300199	1	SInt16	Parameter 19 Unit
Parameter 20	Calculated parame	eter from d	lensity mod	els
200	300201	2	Float32	Parameter 20 value as float
202	300203	1	SInt16	Parameter 20 value scaled by 100
203	300204	1	UInt16	Parameter 20 status
204	300205	2	Float32	Parameter 20 Uncalibrated value
206	300207	1	SInt16	Parameter 20 Unit
Parameter 21	Calculated parame	eter from c	oncentratio	on models
208	300209	2	Float32	Parameter 21 value as float
210	300211	1	SInt16	Parameter 21 value scaled by 100
211	300212	1	UInt16	Parameter 21 status
212	300213	2	Float32	Parameter 21 Uncalibrated value
214	300215	1	SInt16	Parameter 21 Unit
Parameter 22	Sensor Cleanlines	s Ratio		
216	300217	2	Float32	Parameter 22 value as float
218	300219	1	SInt16	Parameter 22 value scaled by 100
219	300220	1	UInt16	Parameter 22 status
220	300221	2	Float32	Parameter 22 Uncalibrated value
222	300223	1	SInt16	Parameter 22 Unit
Sensor Status	Sensor Error Statu	IS		
39	300040	1		
Error	Error State			
514	300515	1	Uint16	Error value

Table 5: Input Registers.

5.3 Data Types

Float: IEEE754 floating point. This data type spans two registers which should be read together. Depending on the endianness of the host it might be necessary to swap high/low byte and/or the respective registers. To transform the value to decimal form, follow the IEEE 754 Standard for Floating Point Binary Arithmetic.

Int16: Signed 16 bit integer (register). Uint16: Unsigned 16 bit integer.

6 Linking tags with Modbus Poll

The Rheonics Modbus TCP instruments offer many different modules and parameters. To select these modules/parameters, the client's configuration tooling software is used, in this case, Modbus Poll.

6.1 Open the software and follow the steps:

Create a new Connection.

Modbus Po	NI - Mbpell1	incline	Direkty View Window Hele	-1	×
	Connect	F3	D5 06 15 16 17 22 23 TC 2 % %		
Mhnol	Disconnect	F4			
Tx = 0. E No conn	Auto Connect Quick Connect	> F5	1000ms		
	Alias 000	00			
1	-	0			
2		0			
3		0			
4		0			
5		0			
6		0			
/		0			
0		0			
6					
onnect			(10.5.33.85): 502		

Figure 9: Modbus Poll new connection.

With the new window, set a Modbus TCP/IP connection type and include the SME IP address that was set before.

e): Err = 0: ID = 1: F = 0 connection Alias 00	3: SR = 1000ms Connection Setup Connection Modbus TCP/IP	X CK	
Alias 00	Connection Connection Modbus TCP/IP	К	
Alias 00	Connection Modeus TCP/IP v	OK	
	Modbus TCP/IP v		
	Corial Cottage	Cancel	
	COM4	Mode	
	200400 C	@ RTU _ ASCI	
	38400 Baud	Response Timeout	
	8 Data bits 🚽	10000 [ms]	
	Odd Parity	Dalas Balurara Dala	
	1 Stop Bit	20 [ms]	
	Remote Modbus Server		
	IP Address or Node Name		
	192.168.8.30	<u> </u>	
	502 3000 [ms]	(Pv4 () Pv6 ()	

Figure 10: Connection Setup.

Contraction		OK
Modbus TCP/IP	~	
Serial Settings		Cancel
COM4	~	Mode
38400 Baud \sim		● RTU ○ ASCII
8 Data bits 🛛 🖂		Response Timeout
Odd Parity 🚽 🖂		Delay Between Pols
1 Stop Bit 👘 🖂	Advanced .	20 [ms]
Remote Modbus Server		
IP Address or Node Nam	e	
192.168.8.30		~

Fill in every other parameter as shown and click Ok.

Figure 11: Connection Setup details.

Go to "Set up" tab and select "Read/Write Definition".

	Read/Write Definition	F8	TC 2 9 8?		
and the second se	Read/Write Once	F6	in call A. I		
Mbpoll1	Read/Write Disabled	Shift+F6		<u>.</u>	
(= 0: Eff = 0: ID =	Excel Log	Alt+X			
Alias	Excel Logging Off	Alt+Q		-	
	Log	Alt+L			
	Logging Off	Alt+O			
	Reset Counters	F12			
	Reset All Counters	Shift+F12			
	Ure as Default				
	USE 05 DEIBUR				
	0				
	0				
	_				

Figure 12: Reading Definition.

Read/Write	Definition		×
Slave ID:	255		OK
Function:	04 Read Input Regis	ters (3x) 🛛 🗸	Cancel
Address:	40 Protoco	l address. E.g.	3 <mark>1</mark> 011 -> 10
Quantity:	10		
Scan Rate:	1000 [ms]		Apply
Disable	Write Disabled le on error		Read/Write Once
View Rows O 10	○20 ○50 ○	100 💿 Fit to	Quantity
Hide A	Alias Columns ss in Cell	PLC Addr	esses (Base 1) Iniel Mode

Once the new window is opened, set all the parameters as shown below (only quantity can be varied).

Figure 13: Configure Read/Write Definition.

Read Parameters, at first, may look like Figure 14, which shows the first 10 registers starting from address 40.

Alia	\$ 00040	
0	d	
11	0	
42	0	
13	0	
4	0	
15	0	
46	1	
47	0	
48	16256	
49	0	

Figure 14: Example of Registers read.

By right-clicking any data, it can be seen that by default the data type is "signed". This needs to be changed for every data according to Table 5.

 00040						
 0						
0						
0						
0						
0						
0						
 1						
 0						
16256			-			
 	Format	>	~	Signed	Alt+Shift+S	
	Read/write Definition	F8		Unsigned	Alt+Shift+U	
	Cut	Ctrl+X		Binary	Alt+Shift+B	
	Сору	Ctrl+C		22 Dissioned		
	Paste	Ctrl+V		32 Bit signed	1	
	Carl and the second	Ctrl+A		32 Bit Unsigned	2	
	Select All			DO MIT STODAD	,	
	Colors	Alt+Shift+C		on bit signed		
_	Colors	Alt+Shift+C		64 Bit Unsigned	>	
	Select All Colors Font	Alt+Shift+C Alt+Shift+F		64 Bit Unsigned 32 Bit Float	\$	Big-endian

Figure 15: Configure Data format.

In this case, when Address 48 is configured as Float32 Big-endian, the value changes to 1, the current Density median. The data is better shown by configuring the correct data type and adding Alias to each address. The result would look like in the following Figure.

-	Aliac	00040	
40	Viesositi Median	00040	
40	viscosity iniculari		
42	Viscosity Median Int	0	
43	Viscosity Median Status	(??) 0x0000	
44	Viscosity median uncalibrated	0	
45		<u>_</u>	
46	Units	1	
47		0	
48	Density Median	1	
49	-		

Figure 16: Data with correct format and alias.

6.2 Import Modbuspoll pre-configured files for Rheonics Modbus Devices

To read values through Modbus Poll easily, pre-configured files can be used. These already have the correct data types and alias. You can find them on Rheonics Support web page <u>here</u>. To import them, follow the next steps.

Click Open on the File Tab.

뭷	Modbus Poll - Mbpoll1	-	×
File	Edit Connection Setup Functions Display View Window Help		
	New Ctrl+N 6 15 16 17 22 23 TC 🖳 🤋 🎌		
	Open Ctrl+O]	
	Close		
	Save Ctrl+S		
	Save As		
	Open Workspace		
	Save Workspace		
	Print Ctrl+P		
	Print Preview		
	Print Setup		
	1 write location name.mbp		
	2 write location ID.mbp		
	3 poll-limits&outputs.mbp		
	4 poll-input-param.mbp		
	5 poll-ext-input-param.mbp		
	6 calibration (1).mbw		
	Exit		
_			

Figure 17: Import pre-configured file.

Choose the desired file between the files available on Rheonics web page.

* 8 8	× □ 県自 几 05	5 06 15 16 17 22 23 TC 🖻	8 ₩?			_		
E.	함 <mark>]</mark> Open							
	🗧 🚽 👻 🕇 📙 > Thi	s PC → Desktop → Modbus → M	odbus Poll >	Modbus Poll >		v ♂ Se	earch Modbus Poll	- 3
	Organize 🔻 New folde	r						
	^	Name		Date modified	Туре	Size		
	🖈 Quick access	poll-additional-info.mbp		8/13/2020 6:14 AM	Modbus Poll File	3 KB		
	🔄 Desktop 🚿	🔛 poll-ch-config.mbp		8/6/2020 4:43 AM	Modbus Poll File	5 KB		
	🕹 Downloads 🖈	🔛 poll-ch-config2.mbp		8/6/2020 4:43 AM	Modbus Poll File	8 KB		
	😤 Documents 🖈	poll-coeff1.mbp		4/9/2019 3:29 AM	Modbus Poll File	4 KB		
	Pictures 🖈	🔛 poll-coeff2.mbp		4/9/2019 3:37 AM	Modbus Poll File	9 KB		
	# Drophox (Rhe *	poll-coeff3.mbp		9/3/2021 9:56 PM	Modbus Poll File	4 KB		
	PWPL P00, 0000	poll-ext-input-param.mbp		4/8/2021 10:56 PM	Modbus Poll File	7 KB		
	BWBJ-B00-0000	poll-input-param.mbp		12/23/2020 5:01 AM	Modbus Poll File	10 KB		
	challenge	poll-limits&outputs.mbp		9/3/2021 9:58 PM	Modbus Poll File	5 KB		
	Modbus Poll	poll-password.mbp		12/23/2020 5:03 AM	Modbus Poll File	1 KB		
	xrsenconf	poll-UUID.mbp		9/1/2020 5:16 PM	Modbus Poll File	2 KB		
	Conbox (Rheonic	poll-write-param14-16.mbp	Type: Modbu	s Poll File	Modbus Poll File	2 KB		
	•	write location ID.mbp	Date modifie	d: 8/6/2020 4:43 AM	Modbus Poll File	2 KB		
	This PC	write location name.mbp	-		Modbus Poll File	2 KB		
	3D Objects	Write Multiple Registers.mbp		8/6/2020 4:25 AM	Modbus Poll File	2 KB		
	Deskton Y	Write_SN.mbp		5/27/2021 4:57 AM	Modbus Poll File	2 KB		

Figure 18: Select a pre-configured file.

R ca.	- Edit Connection Seture Superior	Diantas Mary Mandas	Links		
	e Edit Connection Setup Function	is Display View Window		- 1	49
		06 15 16 17 22 23 10	6 8 4		
x = 11	0: Err = 0: ID = 255: F = 04: SR =	1000ms			
	Aliar	00040		 	-
40	Viscosity Median - Para 0	0.586381			
41	Fiscosty median - Para o	0.500501			
42	Viscosity Median Int	58			
43	Viscosity Median Status	(??) 0x0100			
44	Viscosity median uncalibrated	0.0586381			
45	,,				
46	Units	1			
47		0			
48	Density Median - Para 1	0.53			
49					
50	Density Median Int	52			
51	Density Median Status	(??) 0x0500			
52	Density median uncalibrated	1			
53					
54	Units	24			
55		0			
56	Temperature Median - Para 2	16.998			
57					
58	Temperature Median Int	1699			
59	Temperature Median Status	(??) 0x0100			
60	Temp median uncalibrated	25.783			
61					
62	Units	20			
63		0			
64	Kinematic Viscosity - Para 3	1.10638			
65					
66	Kinematic Viscosity Average Int	110			
67	Kinematic Viscosity Average Status	(??) 0x000x0 (??)			

The chosen File's Registers will appear with the correct data type and name.

Figure 19: Loaded pre-configured file.

6.3 Density Input through Modbuspoll

In the case of the SRV sensor, the viscosity output (Parameter 0) is the product of dynamic viscosity and density. The default measurement output on the viscosity channel assumes a constant density of 1.0 g/cc (1000 kg/m3). To get the actual dynamic or kinematic viscosity from the SRV, the sensor supports input of a constant or temperature-dependent density. For more information see the Support Article on Rheonics web page.

With density input, dynamic and kinematic viscosity can be directly output by the sensor over digital and analog channels without the need of any PC.

The steps below show how the user can set the density on the sensor using Modbus TCP to get dynamic or kinematic viscosity directly from the sensor electronics as well as on the RCP software. This configuration can also be done via the RCP software.

Introduction to density input for SRV

The Density SRV output can be described as a polynomial of the form:

$$D_{out} = D_{o5} \cdot T^5 + D_{o4} \cdot T^4 + D_{o3} \cdot T^3 + D_{o2} \cdot T^2 + D_{o1} \cdot T + D_{o0}$$

With this model, we can describe either a constant density or a temperature-dependent density.

a. Constant density input

To describe a constant density, the coefficient Do0 should be set equal to the constant density value and all the other coefficients should be set to zero.

b. Temperature-dependent density input

To describe a temperature dependent density, assign values to the coefficients, that reflect the density behavior of your fluid with temperature. If you have a fluid reference table (for example Cannon fluids, Nippon grease), you can fit the density to a polynomial model to get the coefficients.

The equation above expects temperature in °C. If you have data in °F or °K, then convert temperature to the corresponding °C before estimating the coefficients. Once you have the coefficients (Do0, Do1, ...), they can be set into the sensor electronics (SME).

Setting Density Input through Modbus TCP

Over Modbus (either RTU or TCP) there are a set of Registers associated with the density input for the SRV sensors. There are two holding registers associated with each of the D_o coefficients of the polynomial. Each pair of Holdings should form a float 32 data type in Big Endian format. The registers are password protected. This means, you should input the user password in the holding register 0 to be able to write the coefficients. The Modbus Function to write to multiple registers is 16 and 03 to read the holding registers.

Register	Holdin	g Register Address	Data Type	
Password	Address = 0;	Uint16		
D_{o0}		Float32		
<i>D</i> ₀₁		Float32		
D_{o2}		1216	Float32	
D_{o3}		1218	Float32	
D_{o4}		Float32		
D_{o5}		1222	Float32	

Table 6: Density Coefficients Registers.

Follow the next steps to configure the Density Input, in this case, using ModbusPoll.

6.3.1.1 Create a new Definition with the following data.

Slave ID:	255			OK
Function:	03 Read H	lolding Reg	jisters (4x) 🗸	Cancel
Address:	0	Protocol	address. E.g	40011 -> 10
Quantity:	1			
Scan Rate:	1000	[ms]		Apply
Dischie				
Disable	Write Disab e on error	led		Read/Write Once
Disable Read/ Disable View Rows 010	Write Disab e on error () 20 ()	led) 50 ()	100 💿 Fit to	Read/Write Once

Figure 20: Reading Address 0 from Holding Register.

6.3.1.2 The register 0 from the Holding Register will appear, change the format to Hex and write the password as shown in Figure.

Alias	00000 (??) 0x0000	
	Write Single Register	×
	Slave ID: 255 Address: 0 Value (HEX): 5312	Send Cancel
	Result N/A ☑ Close dialog on "Respo	nse ok''
	Use Function 06: Write single register 16: Write multiple register	ers

Figure 21: Writing Address 0 from Holding Register.

6.3.1.3 Create another Definition to read and write the D_o coefficients.

ead/write	Definition	60			×
Slave ID:	255				OK
Function:	03 Read	Holding Re	gisters (4x)	~	Cancel
Address:	1212	Protoco	ol address. B	g. 4001	1 -> 10
Quantity:	12				
Scan Rate:	1000	[ms]			Apply
D' LI					
Disable	/Write Disa le on error	bled		Rea	ad/Write Once
Disable Read Disab View Rows 010	Write Disa le on error () 20 ()	bled () 50 ()) 100 💿 Fi	Rea t to Qua	ud∕Write Once

Figure 22: Reading Density Coefficients Registers.

6.3.1.4 Configure these registers with a float 32 format. For a constant density set D_{o0} to the desired value and all others to zero.

🔛 Mbpoll4	ŀ		
Tx = 205:	Err = 0: ID = 2	255: F = 03: SF	R = 1000ms
	Alias	01212	
1212	D0	1	
1213			
1214	D1	0	
1215			
1216	D2	0	
1217			
1218	D3	0	
1219			
1220	D4	0	
1221			
1222	D5	0	
1223			

Figure 23: Example for constant density coefficients.

-	Alias	01212
1212	DO	1
1213		
1214	D1	0.05
1215		
1216	D2	0.02
1217		
1218	D3	0
1219		122
1220	D4	0
1221		
1222	D5	0
1223		**

If a temperature dependent density is required, configure the other D_{o} parameters as needed.

Figure 24: Example for temperature dependent density coefficients.

7

Modbus TCP Command and Response examples

This section helps with the syntax for Modbus TCP Commands and Responses for the mostly used Rheonics parameters. Modbus TCP syntax was previously discussed in <u>Section</u> 5.

7.1 Reading the parameter 3, Temperature median

This is a float data type and the syntax would be as follows:

- Address =56 = 0x0038 (word) (Address in Hex of the first register)
- Functional code= 04=0x0004 (word)-Read input registers
- Number of registers = 02=0x0002 (word)
- Unit ID = 255 = 0xFF

Command Structure:

Trans ID (Hy Byte)	Trans ID (Lo Byte)	Protoc. of ID (Hi byte)	Protoc. of ID (Lo byte)	Length (Hi byte)	Length (Lo byte)	Unit ID	Function Code	Add. 1 st Reg. (Hi Byte)	Add. 1 st Reg. (Lo Byte)	# of Reg. (Hi Byte)	# of Reg. (Lo Byte)
00	00	00	00	00	06	FF	04	00	38	00	02

Response Structure:

		Value of	Value of	Value of	Value of
Functional	Number	the first	the first	the second	the second
Code	of Bytes	register	register	register (Hi	register (Lo
		(Hi Byte)	(Lo Byte)	Byte)	Byte)
04	04	41	B1	5C	29

Data = 0x41B15C29 = 22.17 (Float)

Temperature median = 22.17 °C (default unit)

7.2 Reading the parameter 1, Viscosity median Status

Status value is a UInt16 data type and the syntax would be as follows:

- Address =43 = 0x002B (word) (Address in Hex of the first register)
- Functional code= 04=0x0004 (word)-Read input registers
- Number of registers = 01=0x0001 (word)
- Unit ID = 255 = 0xFF

Command Structure:

Trans	T	Protoc.	Protoc.	l a cartha	I a sa atta			Add.	Add.	# of	# of
ID (Hy	I rans ID (Lo	of ID (Hi	of ID (Lo	Length (Hi	Length (Lo	Unit ID	Function Code	Reg.	Reg.	Reg. (Hi Buto)	Reg. (Lo Puto)
Byte)	вуtе)	byte)	byte)	byte)	byte)			(HI Byte)	(Lo Byte)	byte)	Dyte)
00	00	00	00	00	06	FF	04	00	2B	00	01

Response Structure:

Functional	Number	Value of the first	Value of the first
Code	of Bytes	register	register
		(Hi Byte)	(Lo Byte)
04	02	00	01

Data = **0x0001** = 1 (Uint16) Referring to the parameter status, this value means a general error occurred.

7.3 Reading Viscosity Average Float and Int Value, and its status

This is a Int data type and the syntax would be as follows:

- Address =98 = 0x0062 (word) (Address in Hex of the first register)
- Functional code= 04=0x0004 (word)-Read input registers
- Number of registers = 01=0x0001 (word)
- Unit ID = 255 = 0xFF

Command Structure:

Trans ID (Hy Byte)	Trans ID (Lo Byte)	Protoc. of ID (Hi byte)	Protoc. of ID (Lo byte)	Length (Hi byte)	Length (Lo byte)	Unit ID	Function Code	Add. 1 st Reg. (Hi Byte)	Add. 1 st Reg. (Lo Byte)	# of Reg. (Hi Byte)	# of Reg. (Lo Byte)
00	00	00	00	00	06	FF	04	00	40	00	04

Response Structure:

		1st Dec	1st Dec	2 nd	2 nd	3 rd	3 rd	4 th	4 th
Functional	Number	T ^{ee} Reg.	The Reg.	Reg.	Reg.	Reg.	Reg.	Reg.	Reg.
Code	of Bytes	(⊟I Durte)	(LO Durte)	(Hi	(Lo	(Hi	(Lo	(Hi	(Lo
		Byte)	вуте)	Byte)	Byte)	Byte)	Byte)	Byte)	Byte)
04	08	41	F4	51	EC	OB	EE	00	00

Data = 0408 41F4 51EC 0BEE 0000

Viscosity Average (float32) = 30.54 cP. Viscosity Average (UInt16) = 3054 cP Viscosity Average Status (UInt16) = 0

8 Sensor status and parameter status

All Rheonics sensors (SRV, SRD, DVP, DVM) for inline viscosity and density monitoring have inbuilt status. The status can be read through Modbus with Address 39 (Refer to Table 5: Input Registers.) and can be used over digital communication channels to understand when the sensor is operating correctly and when there is an issue.

8.1 Sensor Error Status

The sensor status can take any of the following values OR a combination of them:

Bit	Hex	Name	Comment		
Bit 0 0x0001 PLL frequency		PLL frequency	The PLL frequency does not match the sensor frequency.		
		mismatch	Derived from the ASB string (E10)		
Bit 1	0x0002	PLL not locked	The PLL is not locked. Derived from the ASB string (E01)		
Bit 2	0x0004	PLL lock incorrect	The PLL has locked on a wrong frequency. Derived from the ASB string (E02)		
Bit 3	0x0008	ASB communication error	Issues with sensor electronics		
Bit 4	0x0010	Temperature sensor failed	The temperature sensor has failed. Derived from the ASB string if temperature is -273.0		
Bit 5	0x0020	Sensor too hot	If temperature is above the hardcoded physical temperature limit.		
Bit 6	0x0040	ASB communication error	Communication issue between two electronics boards in the SME		
Bit 7	0x0080	Serial Changed			
Bit 8	0x0100	Status not clean	Sensor is not clean (only SRV)		
Bit 9	0x0200	Status in Air	Determines if sensor is in air		
Bit 10 -15	Unused				

Table 7: Sensor error status bit code and description.

8.2 Parameter Status

The Parameter Status can take any of the following values, OR a combination of these states. For example: If there is a config error, the status value will be 0x0003 If there is a config error and an internal error, the status will take a value of 0x0023

Bit	Hex	Name	Comment
Bit O	0x0001	General error	This bit is always set in case there is an issue with the parameter. It can be used by the general user or application programmer to alert an issue with that parameter output. For details check the other bits
Bit 1	0x0002	Config error	The parameter is not configured or there exists a configuration error.
Bit 2	0x0004	Hardware error	The parameter cannot be calculated as the hardware failed.

Bit 3	0x0008	Dependent error	A parameter source for a dependent parameter is not available.			
			Example: In case of a free formula a referenced parameter is NAN.			
Bit 4	0x0010	Not ready	No result is yet available. Example: No measurement has been taken yet. The algorithm			
			requires a run-in time			
Bit 5	0x0020	Internal error	Internal error - Report to Rheonics			
Bit 6	0x0040	Calibration Error	Diagnostics			
Bit 7	0x0080	Further use				
Bit 8	0x0100	Parameter Calibrated	Triggered when parameter has a calibration/scale factor/coefficient applied to it.			
Bit 9	0x0200	Model Loaded	Active when a model has been loaded in script parameters. Only valid for parameters 19,20,21			
Bit 10	0x0400	Filtering Active	Active when there is a filter loaded for that parameter			
Bit	0x0800	Not stable	Parameter result not yet stable			
11			Example: Set for example on viscosity if sensor status is not okay.			
Bit	0x1000	Warning	Below lower warning limit (if configured for parameter)			
12		lower				
Bit 13	0x2000	Warning upper	Above upper warning limit (if configured for parameter)			
Bit 14	0x4000	Alarm lower	Below alarm limit (Hardcoded depending on parameter type)			
Bit 15	0x8000	Alarm upper	Above alarm limit (Hardcoded depending on parameter type)			

Table 8: Parameter Status bit code and description.

8.3 How to read sensor status?

Sensor status is a WORD data type, these status bits can be used over digital communication channels to understand when the sensor is operating correctly and when there is an issue.

Figure 25: Sensor status example.

In the scenario described in Figure 25, **Sensor Status has a value 0x311.** Sensor error status is the combination of any bit and in this case is the combination (OR) of the following error bits:

Bit	Н	Comments
0	0x001	The PLL frequency does not match the sensor frequency. Derived from the ASB string (E10)
4	0x010	The temperature sensor has failed. Derived from the ASB string if temperature is -273.0
8	0x100	Sensor is not clean (only SRV)
9	0x200	Status in Air
Result	0x311	

Table 4. Sensor status bits for status 0117.

8.4 Which parameters should I read?

Each of the 23 parameters from Rheonics sensor are shown in <u>Section 5.2</u>.

For up-to-date parameters information, please check the page:

https://support.rheonics.com/support/solutions/articles/81000393235parameter-list-access-for-field-devices

https://support.rheonics.com/support/solutions/articles/81000393237-	
units-translation-table-for-field-devices	200 - 1 - 1
	500 0.0 300

Customers normally choose Parameters 12 (Viscosity Median and last good), 13 (Density Median and last good), 2 (Temperature Median) and sensor status for their process as they provide good information for the fluid.

For custom parameters like concentration, compensated viscosity, and density; parameters 19,20, and 21 can be used. **Contact Rheonics support for more information about mathematical models that the sensors support natively.**

9 Units table

Unit	Unit	Unit	Unit
Index	Display	Index	Display
0		35	°Baumé
1	mPa.s	36	°Brix
2	сР	37	%wt/v
3	Pa.s	38	%v/v
4	Poise	39	%vol
5	Reyn	40	Bar
6	mm²/s	41	psi
7	cSt	42	m³/s
8	St	43	sccm
9	m²/s	44	gpm
10	in²/s	45	рН
11	SUS	46	m³
12	VI	47	gal
13	AV	48	STP
14	PV	49	Tref
15	YP	50	n _D
16	sec	51	%wt
17	μ	52	%Vol
18	η	53	mol/m³
19	ν	54	alcohol
20	°C	55	ethanol
21	۴F	56	Hz
22	°К	57	rhe
23	ref _{xx°Y}	58	°P
24	g/cc		
25	Kg/m³		
26	lb/ft ³		
27	lbm/gal		
28	lbs/gal		
29	ppg		
30	pptf		
31	slug/ft ³		
32	SG		
33	ρ		
34	°API		

Table 7. Units translation table.

10 Troubleshooting

Electronics Issues	
No LED lights, display, or output signals	
Viscosity is not stable	1. SRV viscosity output is compared
	against only dynamic viscosity of
	the calibration fluids.
	2. Sensor is not fully in fluid.
Probe Issues	
NaN values are displayed on the RCP software	1 Check wiring from the probe to
or PLC	SME is correct
	2. Measure the internal resistance
	from the probe
Communication Issues	
No data is visible	1. Try to reset the SME and/or restart
	your master
	3 Check all settings are correct with
	RCP and controller side
	4. Verify there is no duplicated
	address in the network
	5. Try a different cable from the
	network
	6. Try to use the ping command to
	get a response from either the PLC
Dete issues	Or SIME
Data Issues	1 SPV viscosity output is compared
standards	1. SRV viscosity output is compared
	the calibration fluids
Wrong Unit from the data stream	1. Unit is received as HEX
	representation, convert to decimal
Wrong readings for each parameter	1. Verify each parameter is correctly
	mapped, some bytes are swapped
Sensor Status does not match any bit from the sensor status table	1. Sensor status byte is swapped
CRC Error	 Check that Pre-Delay is at least 50 mS

https://support.rheonics.com/support/solutions/articles/81000397718modbus-tcp-ip-troubleshooting-guide

• Contact RHEONICS support desk

- o <u>support@rheonics.com</u>
- o <u>https://support.rheonics.com</u>

https://support.rheonics.com/support/home

11 Reviews and approvals

Version	Nature of changes	Approval	FW version	Date
1	Original	C. Arroyo	3.30/15	16.02.2024

12 Notes/Errata

Contact Rheonics support for customization of system settings.

Notes

EUROPE HEADQUARTERS Rheonics GmbH Klosterstrasse. 19 8406 Winterthur Switzerland Tel: +41 52 511 32 00

US HEADQUARTERS

Rheonics, Inc. 3 Sugar Creek Center Blvd, Ste 100 Sugar Land, TX 77478 United States of America Tel: +1 713 364 5427

Website: <u>https://rheonics.com</u> Support Portal: <u>https://support.rheonics.com</u> Support E-Mail: <u>support@rheonics.com</u> Sales E-Mail: <u>info@rheonics.com</u> ©2021 Rheonics, Inc. All rights reserved. The Rheonics logo is a trademark and service mark of Rheonics Inc. Photographs, excerpts, trademarks, and logos are not endorsements and are used only for representation under fair use copyright laws. All rights stay with the respective owners.

inline process density and viscosity monitoring